Telegram Group & Telegram Channel
🧩 Задача для SQL-аналитиков: "Пропавшие продажи"

📖 Описание задачи

У вас есть таблица sales, где хранятся данные о продажах:


CREATE TABLE sales (
sale_id INT PRIMARY KEY,
sale_date DATE,
product_id INT,
quantity INT,
price DECIMAL(10,2)
);

INSERT INTO sales (sale_id, sale_date, product_id, quantity, price) VALUES
(1, '2024-01-01', 101, 1, 100.00),
(2, '2024-01-02', 102, 2, 150.00),
-- ...
-- остальные данные
;


Каждый день формируется отчёт, где суммируются продажи по дням:


SELECT sale_date, SUM(quantity * price) AS total_sales
FROM sales
GROUP BY sale_date;


Вчера сумма в отчёте была 1,000,000. Сегодня — 980,000, хотя новых записей не удаляли.

📝 Ваша задача:

1. Найти, какие записи "исчезли" из отчёта, если данных в таблице sales фактически не удаляли.
2. Определить, почему эти записи больше не попадают в итоговый запрос.
3. Исправить отчёт, чтобы сумма снова стала 1,000,000.

Ограничения:

- Таблица не изменилась по количеству строк.
- Никто не менял код запроса.
- sale_date, quantity, price остались без изменений.

Подсказка: возможно, дело в NULL, JOIN или неправильной агрегации.

🕵️ Что проверяет задача:

- Знание SQL-агрегации
- Понимание NULL и работы SUM
- Умение анализировать запросы «не через код», а через их результат
- Навык находить «скрытые» ошибки данных (например, sale_date стал NULL)

💡 Решение:

При проверке выяснится, что часть записей имеет `sale_date = NULL` (например, кто-то обновил поле
sale_date на NULL).

Итоговый запрос:

```sql
SELECT sale_date, SUM(quantity * price) AS total_sales
FROM sales
GROUP BY sale_date;
```

не учитывает строки, где `sale_date IS NULL`, потому что
GROUP BY игнорирует NULL как отдельную группу (не попадает ни в один существующий `sale_date`).

Чтобы увидеть эти записи:

```sql
SELECT sale_date, COUNT(*), SUM(quantity * price)
FROM sales
GROUP BY sale_date;
```

Для восстановления суммы нужно добавить обработку NULL, например:

```sql
SELECT COALESCE(sale_date, 'unknown') AS sale_date, SUM(quantity * price) AS total_sales
FROM sales
GROUP BY COALESCE(sale_date, 'unknown');
```

Теперь сумма снова будет 1,000,000, а "пропавшие" продажи попадут в отдельную категорию
unknown.

🎯 Эта задача учит:

Всегда думать о данных, а не только о коде
Проверять поля на NULL даже там, где их не ожидаешь
Уметь объяснять ошибки «бизнес-заказчику», а не только исправлять запрос

🔥 Отличная тренировка внимательности и понимания нюансов SQL-агрегации!

@sqlhub



tg-me.com/sqlhub/1872
Create:
Last Update:

🧩 Задача для SQL-аналитиков: "Пропавшие продажи"

📖 Описание задачи

У вас есть таблица sales, где хранятся данные о продажах:


CREATE TABLE sales (
sale_id INT PRIMARY KEY,
sale_date DATE,
product_id INT,
quantity INT,
price DECIMAL(10,2)
);

INSERT INTO sales (sale_id, sale_date, product_id, quantity, price) VALUES
(1, '2024-01-01', 101, 1, 100.00),
(2, '2024-01-02', 102, 2, 150.00),
-- ...
-- остальные данные
;


Каждый день формируется отчёт, где суммируются продажи по дням:


SELECT sale_date, SUM(quantity * price) AS total_sales
FROM sales
GROUP BY sale_date;


Вчера сумма в отчёте была 1,000,000. Сегодня — 980,000, хотя новых записей не удаляли.

📝 Ваша задача:

1. Найти, какие записи "исчезли" из отчёта, если данных в таблице sales фактически не удаляли.
2. Определить, почему эти записи больше не попадают в итоговый запрос.
3. Исправить отчёт, чтобы сумма снова стала 1,000,000.

Ограничения:

- Таблица не изменилась по количеству строк.
- Никто не менял код запроса.
- sale_date, quantity, price остались без изменений.

Подсказка: возможно, дело в NULL, JOIN или неправильной агрегации.

🕵️ Что проверяет задача:

- Знание SQL-агрегации
- Понимание NULL и работы SUM
- Умение анализировать запросы «не через код», а через их результат
- Навык находить «скрытые» ошибки данных (например, sale_date стал NULL)

💡 Решение:

При проверке выяснится, что часть записей имеет `sale_date = NULL` (например, кто-то обновил поле
sale_date на NULL).

Итоговый запрос:

```sql
SELECT sale_date, SUM(quantity * price) AS total_sales
FROM sales
GROUP BY sale_date;
```

не учитывает строки, где `sale_date IS NULL`, потому что
GROUP BY игнорирует NULL как отдельную группу (не попадает ни в один существующий `sale_date`).

Чтобы увидеть эти записи:

```sql
SELECT sale_date, COUNT(*), SUM(quantity * price)
FROM sales
GROUP BY sale_date;
```

Для восстановления суммы нужно добавить обработку NULL, например:

```sql
SELECT COALESCE(sale_date, 'unknown') AS sale_date, SUM(quantity * price) AS total_sales
FROM sales
GROUP BY COALESCE(sale_date, 'unknown');
```

Теперь сумма снова будет 1,000,000, а "пропавшие" продажи попадут в отдельную категорию
unknown.

🎯 Эта задача учит:

Всегда думать о данных, а не только о коде
Проверять поля на NULL даже там, где их не ожидаешь
Уметь объяснять ошибки «бизнес-заказчику», а не только исправлять запрос

🔥 Отличная тренировка внимательности и понимания нюансов SQL-агрегации!

@sqlhub

BY Data Science. SQL hub


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/sqlhub/1872

View MORE
Open in Telegram


Data Science SQL hub Telegram | DID YOU KNOW?

Date: |

How Does Bitcoin Mining Work?

Bitcoin mining is the process of adding new transactions to the Bitcoin blockchain. It’s a tough job. People who choose to mine Bitcoin use a process called proof of work, deploying computers in a race to solve mathematical puzzles that verify transactions.To entice miners to keep racing to solve the puzzles and support the overall system, the Bitcoin code rewards miners with new Bitcoins. “This is how new coins are created” and new transactions are added to the blockchain, says Okoro.

What is Telegram?

Telegram is a cloud-based instant messaging service that has been making rounds as a popular option for those who wish to keep their messages secure. Telegram boasts a collection of different features, but it’s best known for its ability to secure messages and media by encrypting them during transit; this prevents third-parties from snooping on messages easily. Let’s take a look at what Telegram can do and why you might want to use it.

Data Science SQL hub from us


Telegram Data Science. SQL hub
FROM USA